logo头像

知其然更要知其所以然

如何编写快速且线程安全的Python代码

本文于 735 天之前发表,文中内容可能已经过时。

概述

如今我也是使用Python写代码好多年了,但是我却很少关心GIL的内部机制,导致在写Python多线程程序的时候。今天我们就来看看CPython的源代码,探索一下GIL的源码,了解为什么Python里要存在这个GIL,过程中我会给出一些示例来帮助大家更好的理解GIL。

GIL概览

有如下代码:

1
static PyThread_type_lock interpreter_lock = 0; /* This is the GIL */

这行代码位于Python2.7源码ceval.c文件里。在类Unix操作系统中,PyThread_type_lock对应C语言里的mutex_t类型。在Python解释器开始运行时初始化这个变量

1
2
3
4
5
6
void
PyEval_InitThreads(void)
{
interpreter_lock = PyThread_allocate_lock();
PyThread_acquire_lock(interpreter_lock);
}

所有Python解释器里执行的c代码都必须获取这个锁,作者一开始为求简单,所以使用这种单线程的方式,后来每次想移除时,都发现代价太高了。

GIL对程序中的线程的影响很简单,你可以在手背上写下这个原则:“一个线程运行Python,而另外一个线程正在等待I / O.”Python代码可以使用threading.Lock或者其他同步对象,来释放CPU占用,让其他程序得以执行。

什么时候线程切换? 每当线程开始休眠或等待网络I / O时,另一个线程都有机会获取GIL并执行Python代码。CPython还具有抢先式多任务处理:如果一个线程在Python 2中不间断地运行1000个字节码指令,或者在Python 3中运行15毫秒,那么它就会放弃GIL而另一个线程可能会运行。

协作式多任务

每当运行一个任务,比如网络I/O,持续的时间很长或者无法确定运行时间,这时可以放弃GIL,这样另一个线程就可以接受并运行Python。 这种行为称为协同多任务,它允许并发; 许多线程可以同时等待不同的事件。
假设有两个链接socket的线程

1
2
3
4
5
6
7
def do_connect():
s = socket.socket()
s.connect(('python.org', 80)) # drop the GIL

for i in range(2):
t = threading.Thread(target=do_connect)
t.start()

这两个线程中一次只有一个可以执行Python,但是一旦线程开始连接,它就会丢弃GIL,以便其他线程可以运行。这意味着两个线程都可以等待它们的套接字同时连接,他们可以在相同的时间内完成更多的工作。
接下来,让我们打开Python的源码,来看看内部是如何实现的(位于socketmodule.c文件里):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
 static PyObject *
sock_connect(PySocketSockObject *s, PyObject *addro)
{
sock_addr_t addrbuf;
int addrlen;
int res;

/* convert (host, port) tuple to C address */
getsockaddrarg(s, addro, SAS2SA(&addrbuf), &addrlen);

Py_BEGIN_ALLOW_THREADS
res = connect(s->sock_fd, addr, addrlen);
Py_END_ALLOW_THREADS

/* error handling and so on .... */
}

Py_BEGIN_ALLOW_THREADS宏指令用于释放GIL,他的定义很简单:

1
PyThread_release_lock(interpreter_lock);

Py_END_ALLOW_THREADS用于获取GIL锁,这时,当前现在有可能会卡住,等待其他现在释放GIL锁。

优先权式多任务

Python线程可以自愿释放GIL,但它也可以抢先获取GIL。
让我们回顾一下如何执行Python。 您的程序分两个阶段运行。 首先,您的Python文本被编译为更简单的二进制格式,称为字节码。 其次,Python解释器的主循环,一个名为PyEval_EvalFrameEx()的函数,读取字节码并逐个执行其中的指令。当解释器逐步执行您的字节码时,它会定期删除GIL,而不会询问正在执行其代码的线程的权限,因此其他线程可以运行:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
for (;;) {
if (--ticker < 0) {
ticker = check_interval;

/* Give another thread a chance */
PyThread_release_lock(interpreter_lock);

/* Other threads may run now */

PyThread_acquire_lock(interpreter_lock, 1);
}

bytecode = *next_instr++;
switch (bytecode) {
/* execute the next instruction ... */
}
}

默认情况下,检查间隔为1000个字节码。 所有线程都运行相同的代码,并以相同的方式定期从它们获取锁定。 在Python 3中,GIL的实现更复杂,检查间隔不是固定数量的字节码,而是15毫秒。 但是,对于您的代码,这些差异并不重要。

Python线程安全

如果某个线程在任何时候都可能丢失GIL,那么您必须使代码具有线程安全性。 然而,Python程序员对线程安全的看法与C或Java程序员的不同,因为许多Python操作都是原子的。

原子操作的一个示例是在列表上调用sort()。 线程不能在排序过程中被中断,其他线程永远不会看到部分排序的列表,也不会在列表排序之前看到过时的数据。 原子操作简化了我们的生活,但也有惊喜。 例如,+ =似乎比sort()简单,但+ =不是原子的。 那我们怎么知道哪些操作是原子的,哪些不是?

例如有代码如下:

1
2
3
4
5
n = 0

def foo():
global n
n += 1

我们可以使用python的dis模块获取这段代码对应的字节码:

1
2
3
4
5
6
>>> import dis
>>> dis.dis(foo)
LOAD_GLOBAL 0 (n)
LOAD_CONST 1 (1)
INPLACE_ADD
STORE_GLOBAL 0 (n)

可以看出,n += 1这行代码,编译出了4个字节码:

  1. 将n的值加载到堆栈上
  2. 将常量1加载到堆栈上
  3. 将堆栈顶部的两个值相加
  4. 将总和存回n

请记住,一个线程的每1000个字节码被解释器中断以释放GIL。 如果线程不幸运,这可能发生在它将n的值加载到堆栈上以及何时将其存储回来之间。这样就容易导致数据丢失:

1
2
3
4
5
6
7
8
9
10
11
12
threads = []
for i in range(100):
t = threading.Thread(target=foo)
threads.append(t)

for t in threads:
t.start()

for t in threads:
t.join()

print(n)

通常这段代码打印100,因为100个线程中的每一个都增加了1。 但有时你会看到99或98,这就是其中一个线程的更新被另一个线程覆盖。所以,尽管有GIL,你仍然需要锁来保护共享的可变状态:

1
2
3
4
5
6
7
n = 0
lock = threading.Lock()

def foo():
global n
with lock:
n += 1

同样的,如果我们使用sort()函数:

1
2
3
4
lst = [4, 1, 3, 2]

def foo():
lst.sort()

翻译成字节码如下:

1
2
3
4
>>> dis.dis(foo)
LOAD_GLOBAL 0 (lst)
LOAD_ATTR 1 (sort)
CALL_FUNCTION 0

可以看出,sort()函数被翻译成了一条指令,执行过程不会被打断。

  1. 将lst的值加载到堆栈上
  2. 将其排序方法加载到堆栈上
  3. 调用排序方法

即使lst.sort()需要几个步骤,sort调用本身也是一个字节码,因此不会被打断。 我们可以得出结论,我们不需要锁定sort()。 或者,请遵循一个简单的规则:始终锁定共享可变状态的读写。 毕竟,获取Python中的threading.Lock花销很低。
虽然GIL不能免除锁的需要,但它确实意味着不需要细粒度的锁定。 在像Java这样的自由线程语言中,程序员努力在尽可能短的时间内锁定共享数据,以减少线程争用并允许最大并行度。 但是,由于线程无法并行运行Python,因此细粒度锁定没有任何优势。 只要没有线程在休眠时持有锁,I / O或其他一些GIL丢弃操作,你应该使用最粗糙,最简单的锁。 无论如何,其他线程无法并行运行。

并发提供更好的性能

在诸如网络请求等I/O型的场景中,使用Python多线程可以带来很高的性能提升,因为在I/O场景中,大多数线程都在等待I/O以进行接下来的操作,所以即使单CPU,也能大大提高性能。比如下面这样的代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import threading
import requests

urls = [...]

def worker():
while True:
try:
url = urls.pop()
except IndexError:
break # Done.

requests.get(url)

for _ in range(10):
t = threading.Thread(target=worker)
t.start()

如上所述,这些线程在等待通过HTTP获取URL所涉及的每个套接字操作时丢弃GIL,因此它们比单个线程性能更高。

并行

如果你的任务一定要多线程才能更好的完成,那么,对于Python来说,多线程是不合适的,这种情况下,你得使用多进程,因为每个进程都是单独的运行环境,并且可以使用多核,但这会带来更高的性能开销。下面的代码就是使用多进程来运行任务,每个进程里只有一个线程。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import os
import sys

nums =[1 for _ in range(1000000)]
chunk_size = len(nums) // 10
readers = []

while nums:
chunk, nums = nums[:chunk_size], nums[chunk_size:]
reader, writer = os.pipe()
if os.fork():
readers.append(reader) # Parent.
else:
subtotal = 0
for i in chunk: # Intentionally slow code.
subtotal += i

print('subtotal %d' % subtotal)
os.write(writer, str(subtotal).encode())
sys.exit(0)

# Parent.
total = 0
for reader in readers:
subtotal = int(os.read(reader, 1000).decode())
total += subtotal

print("Total: %d" % total)

因为每个进程都拥有单独的GIL,所以这段代码可以在多核CPU上并行执行。

总结

由于Python GIL的存在,导致Python中一个进程下的多个线程无法并行执行,在I/O密集型的场景中,多线程依然能带来比较好的性能,但是在CPU密集型的场景中,多线程无法带来性能的提升。但同时也是由于GIL的存在,我们在单进程中,线程安全也比较容易达到。